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Self-Adjoint Vector Variational Formulation
for Lossy Anisotropic
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Abstract —Thk paper presents the derivation of a new self-adjoint
variational formula for complex propagation constant in a 10SSYanisotropic

dielectric waveguide, in terms of the magnetic field and real frequency. The

ability to include loss and anisotropy (into the permittivity tensor) while

preserving the self-adjointness of the system is achieved by using the less

common real-type inner product. When used as a basis of Rayleigh-Ritz or

finite-element methods, the formula leads to the canonical eigenvalue

eqnation of the form Ax= Y2Bx.

I. INTRODUCTION

B ECAUSE OF THE design needs for optical and

microwave guides, research has increasingly applied

computer methods for solving uniform waveguiding struc-

tures such as optical channel guide and microwave image

guide. Finite elements have featured particularly in the

analysis of guides where the permittivity varies arbitrarily

in the transverse plane, the permittivity simply varying

from element to element [1]-[4].

This paper is concerned with the problem where the

material is lossy, and permittivity, as well as varying trans-

versely, may be of arbitrary but preferably symmetric

tensor form. Recent finite-element work dealing with the

loss has used weighted-residual methods that i) are not

variational [5]–[8], ii) do not result in canonical eigenvalue

matrix form [5]–[8], and iii) involve solutions via a complex

frequency [5]-[8].

This paper presents a new variational formula for the

complex propagation constant explicitly in terms of real

frequency and the 3-vector H. When used in a finite-ele-

ment or Rayleigh–Ritz procedure, this formula has three

respective advantages of i) giving complex y = a + j~ in a

stationary form (with improved accuracy in y for a given

field representation), ii) resulting in a standard eigenvalue

matrix form

Ax= y2Bx (1)

and so allowing the solution by well-established algorithms

[13], and iii) giving the above matrix form directly for the

required real frequency and so avoiding the unnecessary

iteration via complex frequencies [5], [6], [8].

As with the earlier, references [5]–[8], concern here is

with loss that is not particularly small., However, another
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application of the variational formula is to the class of

structures already described, but where the loss is small. A

more efficient solution for y would then follow by the

standard perturbation technique, i.e., solving for the sim-

pler loss-free case first [1]–[4] and then substituting into

the variational formula.

The first variational formula is for permittivities that are

complex but symmetric so that the resulting waveguide is

lossy but reciprocal [14]. A different and more general

formula (also derived in the paper) emerges when a quite

arbitrary permittivity tensor is included to allow guiding

that is both lossy and nonreciprocal. The problem ceases to

be self-adjoint, so that the “original” and a separate “ad-

joint” magnetic field both need separate representation,

thus doubling the matrix order. Further, in place of (l), the

matrix equation becomes

y2Ax+yBx+Cx=0. (2)

This nonstandard eigenvalue problem can “routinely” be

reduced to (1) via the theory of “lambda” matrices [12],

but the resulting matrix order is doubled again. We, there-

fore, emphasize that it is computationally important to

preserve the self-adjoint system if at all possible.

The procedure we have adopted for deriving the varia-

tional formula is classical, and has been most recently

discussed by Chen and Lien [9]. The details of the analysis

are, however, specific to our problem. Our account also

includes a little about the crucial choice of real or complex

inner products when applied to self-adjctint systems, as well

as a discussion on physical interpretation of the adjoint-

ness relationship, Hence, the paper is divided into two

main sections: in Section II, some important aspects of the

derivation will be discussed, and in Section III, the deriva-

tion itself will be presented, including the outline of the

proof of stationarity.

II. SELF-ADJOINTNESS AND THE CHOXCEOF INNER

PRODUCTS

The object of this study is to establish a variational (or

stationary) formula for the computation of fields in a
passive uniform dielectric waveguide. shown in Fig. 1.
Provided that such a formula can incleed be found, the

independent field components will then be represented by

a complete set of guided modes (eigenvectors) at a given

frequency, as well as the propagation constant (eigenvalue)
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Fig. 1. The geometry of the cross section of a passive umform dielectric
waveguide.

associated with each mode. The guide dispersion character-

istic can then be obtained easily by using the same formula

at different frequencies.

The first step towards the solution is an introduction of

an adjoint waveguide, as a problem auxiliary to the original

one. This idea comes from the physical interpretation of

the variational principle using the concept of generalized

reactions between the original and adjoint systems [9]–[11].

Even though it provides a mathematical basis for the

variational solution of electromagnetic problems, the rela-

tionship between the original and the adjoint guides is

based on the orthogonality between the modes in a real,

physical waveguide [10]. We will, therefore, consider the

adjointness in detail.

Assuming field time-dependence exp( jut) (from now on

the term being implied), the following Maxwell equations

are used to describe the vector fields in the original wave-

guide (Fig. 1):

–vx&’=j@poA?

v x w = ju6011c]l&.

Similarly, Maxwell’s equations for the

joint waveguide can be written as

–V X &a= jtipOA?a

v x %“= jQ601[(”l[&”

(3)

(4)

fields in the ad-

(5)

(6)

In (3)–(6), p. and ~0 are the parameters of free space

and \Ic I\ and [Ica [1 are the relative complex permittivit y
tensors for the media filling the original and the adjoint

guide, respectively. (Note that the vector fields r$,&a, %,

and .%”, are also complex.) The relative permeability of

dielectrics is assumed to be unity.

Even though we are essentially working in three dimen-

sions, the structure of the uniform waveguides is effectively

two dimensional. Hence, the constraint imposed on the

perrnittivity tensors is that they must be independent of the

axial coordinate (z in this case) so that the media is only

transversely inhomogeneous. At this stage, we will not

impose any other restrictions on the guiding media. Thus,

it can also be lossy and anisotropic and the permittivity

tensor will, therefore, (in the matrix form) look like

[1

E.Yx c , (x=

Ilc(x,y)ll= (JJx ~; ~.,:
cZx t ~y ~x=

where all terms may be complex.

Also due to the two-dimensional structure, the waves

will have z-dependence exp ( – yz ). We can then rewrite &,

&“, ~, and %” in the form

f%(x, y,z)=l?(x,y )exp(-yz)

&a(x, y,z)=E”(x, y)exp(–yaz) (7)

#(x, y,z)=17(x, y)exp(-yz)

%U(x,y,z )=lfa(x,y)exp(-y%) (8)

where y and y o are the propagation constants correspond-

ing to the original and adjoint fields, respectively, and are

complex numbers of the form

y=a+jp. (9)

We begin discussing adjointness by establishing the rela-

tionship between y and Y“. But first, we need to define a

surface real inner product of the two complex vectors A

and B as

(zI, B) = ~jA.Bdxdy (lo)
R

where the region of integration R is the cross section of the

guide. The surface complex inner product is defined simi-

larly, B being replaced by B*, the complex conjugate. The

inner product mapping defined above has its standard

properties, summarized in [9] and [15].

As it will be shown later, the choice between the real and

complex inner products is arbitrary only for the most

general class of problems (i.e., the nonself-adjoint ones).

However, for the self-adjoint cases, important restrictions

have to be imposed on the media tensors (and linear

operators), depending on which inner product definition is

chosen.

Whenever the inner product is used in this work, vector

A is to be replaced by the original field or its linear

transform, and vector B by the adjoint field (or its trans-

form). Hence, to obtain useful expressions by evaluating

the surface integral, the product A. B must only be a

function of x and y, i.e., the exponential (z-dependent)

terms of the original (&,%) and the adJoint ( 6“, i%”)

vector fields must cancel out. This is possible only if:

Y”= – Y (for real inner products), or (11)

Y a = y“(for complex inner products). (12)

Note that conditions (11) and (12) apply to both self-

adjoint and nonself-adjoint systems.

From the relationship of y and y“ (eq. (11) and (12)), it

can be seen that for a mode in the original guide, associ-

ated with y and propagating in the positive z-direction, the

corresponding mode in the adjoint guide with – y a as its

eigenvalue, will propagate in the negative z direction. How-
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ever, in the case of a self-adjoint system, y (and similarly

y“) occurs simultaneously as an eigenvalue in the original

and the adjoint guide. This follows from the fact that the

roots of the standard eigenvalue equation (2) come in pairs

symmetric about the origin in the complex plane. On the

other hand, the nonself-adjoint formula for the propa-

gation constant results in a nonstandard eigenvalue equa-

tion (2), whose roots do not possess such symmetry.

Now we re-express Maxwell’s equations in linear oper-

ator form, with (3)–(6) becoming

Jzf=o (13)

yafa=o (14)

where f and f a are the original and adj oint electric

and/or magnetic fields, and 4P and SY” are their respec-

tive linear operators. To obtain S3’ for the magnetic field,

for example, we have to express the vector field & from (4)

in terms of vector %:

Vx%
8=llcll-’— (15)

jticO

and substitute it into (3), which then becomes

Conditions a) and b) can be either essential or natural;

for this study, we assume them to be essential boundary

conditions (which is easy to arrange), so that the trial fields

f and f“ will indeed satisfy a) or b). Then we do not need

to include any additional terms into the derivation of the

stationary formula, as in [9]. In the case of a), it is assumed

that we have either a physical symmetry plane(s) or the

boundaries of the guide are perfect conductors. If loss

needs to be introduced into the WaVe@,ide wall, we can

represent it by a lossy dielectric which extends to infinity,

our boundary condition now being c). The importance of

condition b) is purely computational, as it occurs only

when applied to planes of physical symmetry.

Due to the fact that the given boundary conditions are

always self-adjoint (unlike, for example, the “impedance”

wall), the geometry of cross sections of the original and

adjoint guides is identical.

To deduce the relationship between the transversely

varying parts of the eigenmodes/vector fields, namely E
and E a (or H and Ha), we observe the relationship

between the characteristics of the guiding media in the

original and the adjoint systems, as well as their respective

boundary conditions. For the nonself-adjoint problem, Ilcll

~,%? =V X(IICII-lV X %)– ti2po+%’ = O. (16) and Ikall are ‘elated bY

We can similarly obtain ~a from the equations for the

adjoint field:

4?’”%” +V X(llc”ll-% x .%’)– u*poq#’”= o. (17)

9“ can also be found directly from 9 by simply

replacing II(It by its adjoint IIcull in (16). Two remarks

should be made about IIcII-1.

i) The inverse of the adjoint permittivity tensor is equal

to the adjoint of the inverse tensor, or

Ilcall= l161\T (for real inner products) (20)

ll~all = (l\tll~)* (for complex inner products). (21)

From (20) and (21) and Maxwell’s equations, it can be

shown that the transversely varying parts of the original

and the adjoint fields are not simply related at all. How-

ever, for the self-adjoint problems, the media in the origi-

nal and the adjoint guide are, by definition, the same, i.e.,:

ll~all = 11611. (22)

(ll~all)-l= (1141-’)a. (18) Thus, we have the following two relations, in addition to

ii) It can be shown that if we split IIcII-1 into its real and (20) and (21) above:

imaginary parts, the imaginary part would again, as with

llcII, correspond to losses.

We could equally deduce ~ for an electric field, or

indeed for a 6-vector field representing both vectors # and

%’. In general, the identity that relates the fields in the

original and the adjoint systems to their respective oper-

ators is
(.E’”f”, f) = (f”,lzf). (19)

The operators g and JZ’” can be subject to a number of

boundary conditions. We are particularly interested in the

following:

a) the electric wall or n x & = n x &’a = O

b) the magnetic wall or n x %’=n x %U= O

c) the radiation boundary condition (unbounded sys-

tem)

where n is an outward normal unit vector to the waveguide

wall S (Fig. 1). The radiation boundary condition repre-

sents the case when the cross section of the guide extends

to infinity, one way of dealing with this being to use the

so-called “infinite” elements [4].

hell = 11611T (for real inner products) (23)

11611= (llEll~)* (for complex inner products). (24)

In this case, the fields in the two guides will be represented

by two identical sets of eigenvectors (which can, again, be
deduced from Maxwell’s equations, (23) and (24) above,

and also the fact that y occurs simultaneously in both

guides). Hence, for the self-adjoint case, we have

H(x, y)= Ha(x, y) (25)

E(x, y)= Ea(x, y). (26)

Thus, the adjoint field does ‘not need LO be represented

separately, which, in turn, means that the required matrix

order is halved. Therefore, the self-adjoint problems are

computationally very desirable. But there is a price to pay.

The medium can be lossy prouiding its tensor is symmetric

(as in (23), the guide then being reciprocal [14]). Alterna-

tively its tensor can be nonsymmetric providing it is

Hermitian (viz, loss-free, as in (24), the guide then being

nonreciprocal). To preserve the self-adjoint system, a con-



132 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 1, JANUARY 1986

straint must be accepted, and a correct choice of inner

product made. The case of concern in this paper involves a

lossy dielectric which is reciprocal. Hence, to derive the

stationary formula, we must use the real inner product.

Finally, we consider the ways in which an electromag-

netic field can be represented in a variational form. We

consider the choice of formulation in relation to our specific

problem of a transversely inhomogeneous dielectric. Four

possible formulations are

a) E – H formulation (6-vector)

b) E formulation (3-vector)

c) H formulation (3-vector)

d) E,- Hz formulation (2-vector).

The formulations a) and b) are not appealing since some

transverse components of E are discontinuous at the

boundary of two dielectrics. Any attempt to take care of

this physical discontinuity would result in an unnecessary

complication, especially knowing that all components of

H (as well as the z component of E) are continuous over

the cross section. The choice is narrowed down to c) and

d).

From the aspect of computer storage, choice d) seems to

be the more desirable, the field being represented by the

minimum number of components. However, it can be

shown that for a dielectric with a general symmetric tensor,

the resulting formulation would give a nonstandard ei-

genvalue problem. As mentioned before, this can be re-

duced to a standard eigenvalue problem at the expense of

doubling the matrix order. Therefore, with the H-formula-

tion for a given memory space or matrix order, we have the

most compact field representation.

III. VALUATIONAL FORMULATION

To derive the stationary formula for the propagation

constant, we begin by obtaining a more general variational

functional I.

The first variation 81 of this functional must be equal to

zero. For the simultaneous solution of (13) and (14), the

idea (based on the principle of generalized reactions [9] and

[11]) is to express 81 in the form

81= (af”, Y’f) + (Y”f”, af) (27)

where 8f and tlfa are the variations of f and f“, respec-

tively. The functional 1 can now be found from 81 by

simply “integrating” the right-hand side of (27), with re-
spect to the unknown fields f and ~“, i.e.,

1= (f”, s?f)
or, using the identity (19) governing

operators, the equivalent of (28) is:

I=(JZafa, f)

(28)

the use of linear

(29)

and for the self-adjoint case, (29) simply reduces to

1= (&f”, f). (30)

We derive the functional for the nonself-adjoint case

first, and then deduce from it the self-adjoint formulation

(30) as its special case. To obtain the formula for any

stationary quantity that might be contained in the func-

tional 1, we use the additional fact that

I(f, f”)=o (31)

which is only true for the passive (sourceless) media. Hav-

ing decided on the choice of a real inner product and the H

formulation, we now substitute (17) into the above (31),

which then becomes (using the fact that the curl operator is

symmetric)

([lt”]l-% X .%a,v X .%’) - CJ2poEo(.2f’”,.#) = O (32)

or if the alternative expression (29) for 1 is used, we have

(v x %’U,llfll-’v x .%’) - Ld’poco(w”,x) = o. (33)

Two possible parameters for which the variational for-

mula can be deduced from 1 (or more precisely from (31))

are the frequency and the propagation constant. The for-

mula for the frequency directly follows from (32)

~’= (ll~all-’v x %’U,v x .%)

/Joco(i#”,&’) “

Note that the above formula is nonself-adjoint. so that it

applies to any dielectric tensor. Nevertheless, it still reduces

to the standard eigenvalue problem, unlike the general

formula for the propagation constant. However, the

frequency obtained for a given propagation constant is

complex. For the time-harmonic solution, we then have to

iterate until the imaginary part becomes sufficiently small

[5], [6], [8]. This has to be done even for the self-adjoint

cases. As mentioned before, this iteration is wasteful when

compared with the directness of the solution that can be

achieved with a variational formula for the complex propa-

gation constant.

To deduce a formula for the propagation constant from

(32) or (33), we split the curl operator into transverse and

longitudinal parts

VX=VTX+V, X (34)

where VT X and V, X are

ad d
vTx’ #+-j

ay
vzx=~~

z

and 2, -j, and 2 unit vectors in the x, y and z directions,

respectively. If we substitute (34) into (32) and differentiate

w.r.t. z only, using (11), we arrive at

(IIE”II-’VTX %’”,VTX .%)

– y(\l#-%T x %“,2 x %)

+ y(\lc”ll-% x %’=,VTX A?)

–y’(llc”ll-l;x W’,.2X w)

– O’poco(%”,.%’) = o (35)

which is the nonself-adjoint formula for the propagation

constant. Clearly, (35) is a nonstandard eigenvalue equa-

tion (2).

Taking into account the fact that the solutions of the

original and the adjoint waveguide for self-adjoint cases
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are two identical sets of eigenvalues and eigenvectors, as sion of the variational formula is given in (35), though here
well as (23), it can be shown that (35) reduces to the choice of real or complex inner product is no longer

(l[cl[-’vTx H,vTx H)-ti’p060(H, H)
crucial.

~’=
(IICII-’2XH,2XH)

-. (36)

Note that the fields have been replaced with their trans- ACKNOWLEDGMENT
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Jj I 1( “ ffff~~.~,llE\ - vTx H). (vTx H)dxdy–u2poEo

72=

,lJ

(37)
Ilcll-lf X H.2 X Hdedy

as the self-adjoint formula for the propagation constant

involving Iossy reciprocal media.

Now to check that the obtained formula (37) is indeed

stationary, we rewrite it as

(llcl]-’v~x H,vTx H)- 021-LOCO(H,H)

=y2(llc11-l;XH,jXH). (38)

If the small perturbation 8H of the vector field H is

introduced into (38), it results in a small change 8%2 in the

term y’ at a given frequency. Hence, (38) becomes

-(y2+8y2)(l\c!l-Q x( H+8H),.2x(H+8H))

– (J2pOCO(H+ 8~,H+ (3H)

+([ICII-lVT X( H+8H), VT X( H+8H)) =0. (39)

If the propagation constant term y 2 is stationary, then

i3y 2 must be zero by Euler’s theorem. Hence, if we subtract

(38) from (39), ignore all terms of second order, and put

~y 2 to zero, we arrive at

(13H, V X([@v X H)- @’potOZI) =0. (40)

For an arbitrary 8H in (40), the second term of the inner

product emerges as the Euler equation (41)

v X(IICII-lV XH)– CJ2yoEQH=0 (41)

thus completing the proof of stationarity.

IV. CONCLUSION

A new variational formula (eq. (37)) has been established

for the solution of passive,’ uniform dielectric waveguides,

with an arbitrary permittivity profile. By using the less

common real inner product, the desired variational formu-

lation has been achieved in self-adjoint form, in terms of

real frequency, and leading to standard eigenvalue matrix

form. This has been achieved by accepting the constraint of

a symmetric (complex) permittivit y tensor. Although a new

formulation, it is in effect complementary to the well-known
formulas (e.g., [16]) which used a complex inner product,

and so (for self-adjointness) was constrained to a Hermi-

tian permittivity tensor.

For the rare situation concerning material tensors that

are neither Herrnitian nor symmetric (where the guide

could be lossy and nonreciprocal), a nonself-adjoint ver-
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