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Abstract —This paper presents the derivation of a new self-adjoint
variational formula for complex propagation constant in a lossy anisotropic
dielectric waveguide, in terms of the magnetic field and real frequency. The
ability to include loss and anisotropy (into the permittivity tensor) while
preserving the self-adjointness of the system is achieved by using the less
common real-type inner product. When used as a basis of Rayleigh—Ritz or
finite-element methods, the formula leads to the canonical eigenvalue
equation of the form Ax = y?Bx.

1. INTRODUCTION

ECAUSE OF THE design needs for optical and

microwave guides, research has increasingly applied
computer methods for solving uniform waveguiding struc-
tures such as optical channel guide and microwave image
guide. Finite elements have featured particularly in the
analysis of guides where the permittivity varies arbitrarily
in the transverse plane, the permittivity simply varying
from element to element [1]-[4].

This paper is concerned with the problem where the
material is lossy, and permittivity, as well as varying trans-
versely, may be of arbitrary but preferably symmetric
tensor form. Recent finite-element work dealing with the
loss has used weighted-residual methods that 1) are not
variational [5]-[8], i) do not result in canonical eigenvalue
matrix form [5]-[8], and iii) involve solutions via a complex
frequency [S]-[8].

This paper presents a new variational formula for the
complex propagation constant expliciily in terms of real
frequency and the 3-vector H. When used in a finite-ele-
ment or Rayleigh—Ritz procedure, this formula has three
respective advantages of i) giving complex y=a+ j8 in a
stationary form (with improved accuracy in y for a given
field representation), ii) resulting in a standard eigenvalue
matrix form

Ax=7v2Bx (1)
and so allowing the solution by well-established algorithms
[13], and iii) giving the above matrix form directly for the
required real frequency and so avoiding the unnecessary
iteration via complex frequencies [5], [6], [8].

As with the earlier references [5]-[8], concern here is
with loss that is not particularly small, However, another
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application of the variational formula is to the class of
structures already described, but where the loss is small. A
more efficient solution for y would then follow by the
standard perturbation technique, i.e., solving for the sim-
pler loss-free case first [1]-[4] and then substituting into
the variational formula.

The first variational formula is for permittivities that are
complex but symmetric so that the resulting waveguide is
lossy but reciprocal [14]. A different and more general
formula (also derived in the paper) emerges when a quite
arbitrary permittivity tensor is included to allow guiding
that is both lossy and nonreciprocal. The problem ceases to
be self-adjoint, so that the “original” and a separate “ad-
joint” magnetic field both need separate representation,
thus doubling the matrix order. Further, in place of (1), the
matrix equation becomes

y*Ax+yBx + Cx=0. (2)
This nonstandard eigenvalue problem can “routinely” be
reduced to (1) via the theory of “lambda” matrices [12],
but the resulting matrix order is doubled again. We, there-
fore, emphasize that it is computationally important to
preserve the self-adjoint system if at all possible.

The procedure we have adopted for deriving the varia-
tional formula is classical, and has been most recently
discussed by Chen and Lien [9]. The details of the analysis
are, however, specific to our problem. Our account also
includes a little about the crucial choice of real or complex
inner products when applied to seif-adjoint systems, as well
as a discussion on physical interpretation of the adjoint-
ness relationship. Hence, the paper is divided into two
main sections: in Section II, some important aspects of the
derivation will be discussed, and in Section III, the deriva-
tion itself will be presented, including the outline of the
proof of stationarity.

II. SELF-ADIJOINTNESS AND THE CHOICE OF INNER
ProDUCTS

The object of this study is to establish a variational (or
stationary) formula for the computation of fields in a
passive uniform dielectric waveguide. shown in Fig. 1.
Provided that such a formula can indeed be found, the
independent field components will then be represented by
a complete set of guided modes (eigenvectors) at a given
frequency, as well as the propagation constant (eigenvalue)
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Fig. 1. The geometry of the cross section of a passive uniform dielectric
waveguide.

associated with each mode. The guide dispersion character-
istic can then be obtained easily by using the same formula
at different frequencies.

The first step towards the solution is an introduction of
an adjoint waveguide, as a problem auxiliary to the original
one. This idea comes from the physical interpretation of
the variational principle using the concept of generalized
reactions between the original and adjoint systems [9]-[11].
Even though it provides a mathematical basis for the
variational solution of electromagnetic problems, the rela-
tionship between the original and the adjoint guides is
based on the orthogonality between the modes in a real,
physical waveguide [10]. We will, therefore, consider the
adjointness in detail.

Assuming field time-dependence exp( jwt) (from now on
the term being implied), the following Maxwell equations
are used to describe the vector fields in the original wave-
guide (Fig. 1):

-V X €= jop,¥ (3)
V X # = jwegle||&. (4)

Similarly, Maxwell’s equations for the fields in the ad-
joint waveguide can be written as

—V X &= jou - (5)
(6)

In (3)-(6), p, and e, are the parameters of free space
and |l¢/| and ||e“|| are the relative complex permittivity
tensors for the media filling the original and the adjoint
guide, respectively. (Note that the vector fields &,6%, o,
and ¢ are also complex.) The relative permeability of
dielectrics is assumed to be unity.

Even though we are essentially working in three dimen-
sions, the structure of the uniform waveguides is effectively
two dimensional. Hence, the constraint imposed on the
permittivity tensors is that they must be independent of the
axial coordinate (z in this case) so that the media is only
transversely inhomogeneous. At this stage, we will not
impose any other restrictions on the guiding media. Thus,
it can also be lossy and anisotropic and the permittivity

vV X H = jwey|e?| ¢

tensor will, therefore, (in the matrix form) look like

€xx cxy €xz
He(x,y)”z €yx €y G
sz €zy 6::

where all terms may be complex.

Also due to the two-dimensional structure, the waves
will have z-dependence exp(— yz). We can then rewrite &,
&4, ., and ¢ in the form

&(x.y,z) =E(x, y)exp(—vz)

é’”(x’y,z)=E“(x,y)exp(-—y”z) (7)
H(x,y,z)=H(x,y)exp(—yz)
H(x,y,2)=H"(x,y)exp(—v“) (8)

where y and y¢ are the propagation constants correspond-
ing to the original and adjoint fields, respectively, and are
complex numbers of the form

y=a+ jB. (9)
We begin discussing adjointness by establishing the rela-
tionship between y and y“ But first, we need to define a

surface real inner product of the two complex vectors A4
and B as

(10)

where the region of integration R is the cross section of the
guide. The surface complex inner product is defined simi-
larly, B being replaced by B*, the complex conjugate. The
inner product mapping defined above has its standard
properties, summarized in [9] and [15].

As it will be shown later, the choice between the real and
complex inner products is arbitrary only for the most
general class of problems (i.e., the nonself-adjoint ones).
However, for the self-adjoint cases, important restrictions
have to be imposed on the media tensors (and linear
operators), depending on which inner product definition is
chosen.

Whenever the inner product is used in this work, vector
A is to be replaced by the original field or its linear
transform, and vector B by the adjoint field (or its trans-
form). Hence, to obtain useful expressions by evaluating
the surface integral, the product 4-B must only be a
function of x and y, i.e., the exponential (z-dependent)
terms of the original (&, 7€) and the adjoint (&% 3¢ “)
vector fields must cancel out. This is possible only if:

(4,B)= [[ 4 Baxdy

a

y*= —v (for real inner products), or

(11)
(12)
Note that conditions (11) and (12) apply to both self-
adjoint and nonseclf-adjoint systems.

From the relationship of v and y° (eq. (11) and (12)), it
can be seen that for a mode in the original guide, associ-
ated with y and propagating in the positive z-direction, the
corresponding mode in the adjoint guide with — v as its
eigenvalue, will propagate in the negative z direction. How-

v* = y*(for complex inner products).
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ever, in the case of a self-adjoint system, y (and similarly
v4) occurs simultaneously as an eigenvalue in the original
and the adjoint guide. This follows from the fact that the
roots of the standard eigenvalue equation (2) come in pairs
symmetric about the origin in the complex plane. On the
other hand, the nonself-adjoint formula for the propa-
gation constant results in a nonstandard eigenvalue equa-
tion (2), whose roots do not possess such symmetry.

Now we re-express Maxwell’s equations in linear oper-
ator form, with (3)—(6) becoming

Lf=0 (13)

LUi=0 (14)

where f and f¢ are the original and adjoint electric
and /or magnetic fields, and % and #“ are their respec-
tive linear operators. To obtain & for the magnetic field,

for example, we have to express the vector field & from (4)
in terms of vector #:

V.X x (15)

Jwey

and substitute it into (3), which then becomes

LH=v ><(||e||_lv X .%”)— W€ = 0.

E=llel™!

(16)

We can similarly obtain #“ from the equations for the
adjoint field:

Feo=v X (e 7'v X # ) — g, H#e=0. (17)

Z¢ can also be found directly from & by simply
replacing ||¢|| by its adjoint ||€?|| in (16). Two remarks
should be made about ||e||™*.

i) The inverse of the adjoint permittivity tensor is equal
to the adjoint of the inverse tensor, or

(e ™ = (el )" (18)

ii) It can be shown that if we split ||¢/| ™" into its real and
imaginary parts, the imaginary part would again, as with
|lell, correspond to losses.

We could equally deduce # for an electric field, or
indeed for a 6-vector field representing both vectors & and
. In general, the identity that relates the fields in the
original and the adjoint systems to their respective oper-

ators is
(LSS =f%Zf)- (19)
The operators . and #* can be subject to a number of

boundary conditions. We are particularly interested in the
following:

a) theelectricwallor aX&=nX&%=0

b) the magneticwallor n X #F =nX H#*=0

¢) the radiation boundary condition (unbounded sys-
tem)

where n is an outward normal unit vector to the waveguide
wall S (Fig. 1). The radiation boundary condition repre-
sents the case when the cross section of the guide extends

to infinity, one way of dealing with this being to use the’

so-called “infinite” elements [4].
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Conditions a) and b) can be either essential or natural,
for this study, we assume them to be essential boundary
conditions (which is easy to arrange), so that the trial fields
f and f¢ will indeed satisfy a) or b). Then we do not need
to include any additional terms into the derivation of the
stationary formula, as in [9]. In the case of a), it is assumed
that we have either a physical symmetry plane(s) or the
boundaries of the guide are perfect conductors. If Ioss
needs to be introduced into the waveguide wall, we can
represent it by a lossy dielectric which extends to infinity,
our boundary condition now being c¢). The importance of
condition b) is purely computational, as it occurs only
when applied to planes of physical symmetry.

Due to the fact that the given boundary conditions are
always self-adjoint (unlike, for example, the “impedance”
wall), the geometry of cross sections of the original and
adjoint guides is identical.

To deduce the relationship between the transversely
varying parts of the eigenmodes/vector fields, namely E
and E° (or H and H*?), we observe the relationship
between the characteristics of the guiding media in the
original and the adjoint systems, as well as their respective
boundary conditions. For the nonself-adjoint problem, ||¢||
and |je?|| are related by

lle“ll = llell”
lle?ll = (llel™)*

From (20) and (21) and Maxwell’s equations, it can be
shown that the transversely varying parts of the original
and the adjoint fields are not simply related at all. How-
ever, for the self-adjoint problems, the media in the origi-
nal and the adjoint guide are, by definition, the same, i.e.,:

el = liell- (22)

Thus, we have the following two relations, in addition to
(20) and (21) above:

(20)

(for complex inner products). (21)

(for real inner products)

llell = flell”
llell = (llell™)*

In this case, the fields in the two guides will be represented
by two identical sets of eigenvectors (which can, again, be
deduced from Maxwell’s equations, (23) and (24) above,
and also the fact that y occurs simultaneously in both
guides). Hence, for the self-adjoint case, we have

H(x,y)=Hx,y) (25)
E(x,y)=E“(x,y). (26)

Thus, the adjoint field does not need to be represented
separately, which, in turn, means that the required matrix
order is halved. Therefore, the self-adjoint problems are
computationally very desirable. But there is a price to pay.
The medium can be lossy providing its tensor is symmetric
(as in (23), the guide then being reciprocal [14]). Alterna-
tively its tensor can be nonsymmetric providing it is
Hermitian (viz, loss-free, as in (24), the guide then being
nonreciprocal). To preserve the self-adjoint system, a con-

(23)

(for complex inner products). (24)

(for real inner products)
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straint must be accepted, and a correct choice of inner
product made. The case of concern in this paper involves a
lossy dielectric which is reciprocal. Hence, to derive the
stationary formula, we must use the real inner product.

Finally, we consider the ways in which an electromag-
netic field can be represented in a variational form. We
consider the choice of formulation in relation to our specific
problem of a transversely inhomogeneous dielectric. Four
possible formulations are

a) E - H formulation (6-vector)
b) E formulation (3-vector)

¢) H formulation (3-vector)

d) E,-H, formulation (2-vector).

The formulations a) and b) are not appealing since some
transverse components of E are discontinuous at the
boundary of two dielectrics. Any attempt to take care of
this physical discontinuity would result in an unnecessary
complication, especially knowing that all components of
H (as well as the z component of E) are continuous over
the cross section. The choice is narrowed down to ¢) and
d).

From the aspect of computer storage, choice d) seems to
be the more desirable, the field being represented by the
minimum number of components. However, it can be
shown that for a dielectric with a general symmetric tensor,
the resulting formulation would give a nonstandard ei-
genvalue problem. As mentioned before, this can be re-
duced to a standard eigenvalue problem at the expense of
doubling the matrix order. Therefore, with the H-formula-
tion for a given memory space or matrix order, we have the
most compact field representation,

III. VARIATIONAL FORMULATION

To derive the stationary formula for the propagation
constant, we begin by obtaining a more general variational
functional 1.

The first variation 8/ of this functional must be equal to
zero. For the simultaneous solution of (13) and (14), the
idea (based on the principle of generalized reactions [9] and
[11]) is to express 8/ in the form

O8I = (8f, LI+ (L 8f) (27)
where 8f and 8f“ are the variations of f and f¢, respec-
tively. The functional I can now be found from 81 by
simply “integrating” the right-hand side of (27), with re-
spect to the unknown fields f and [, ie.,

I={f*<Zf) (28)
or, using the identity (19) governing the use of linear
operators, the equivalent of (28) is:

I={ZL(% f) (29)
and for the self-adjoint case, (29) simply reduces to
I={Zf%[). (30)

We derive the functional for the nonself-adjoint case
first, and then deduce from it the self-adjoint formulation
(30) as its special case. To obtain the formula for any

stationary quantity that might be contained in the func-
tional I, we use the additional fact that

I(f, /) =0 (31)
which is only true for the passive (sourceless) media. Hav-
ing decided on the choice of a real inner product and the H
formulation, we now substitute (17) into the above (31),
which then becomes (using the fact that the curl operator is
symmetric)

eIV X #4V X H# ) — 0’ pe( K H#Y=0 (32)
or if the alternative expression (29) for I is used, we have
(VX el "IV X H#)— 0pe(H4H#Y=0. (33)

Two possible parameters for which the variational for-
mula can be deduced from I (or more precisely from (31))
are the frequency and the propagation constant. The for-
mula for the frequency directly follows from (32)

B eIV X #T X #)
Poe o K, H )

Note that the above formula is nonself-adjoint, so that it
applies to any dielectric tensor. Nevertheless, it still reduces
to the standard eigenvalue problem, unlike the general
formula for the propagation constant. However, the
frequency obtained for a given propagation constant is
complex. For the time-harmonic solution, we then have to
iterate until the imaginary part becomes sufficiently small
[5], [6], [8]. This has to be done even for the self-adjoint
cases. As mentioned before, this iteration is wasteful when
compared with the directness of the solution that can be
achieved with a variational formula for the complex propa-
gation constant.

To deduce a formula for the propagation constant from
(32) or (33), we split the curl operator into transverse and
longitudinal parts

2

VX =EVrX+V, X (34)

where v, X and v, X are

' ‘B
R +_ = e
ax oy VT

and X, . and £ unit vectors in the x, y and z directions,
respectively. If we substitute (34) into (32) and differentiate
w.r.t. z only, using (11), we arrive at

el X 4V X H)
=¥l IV X H4E X H)
(e TEX H LT X H)
- yz<||e“|[‘12 X HUEXH)
— W (HH) =0

VTX:

(35)

which is the nonself-adjoint formula for the propagation
constant. Clearly, (35) is a nonstandard eigenvalue equa-
tion (2).

Taking into account the fact that the solutions of the
original and the adjoint waveguide for self-adjoint cases
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are two identical sets of eigenvalues and eigenvectors, as
well as (23), it can be shown that (35) reduces to

2 el vy XH v X H ) = w2#o€o<H> H) (36)
(lel™2x H,2X H ) |

Note that the fields have been replaced with their trans-

versely varying parts (eq. (8)), as the z-dependent terms

cancel in the inner product. Now, expressing the inner
products in (36) in their integral form, we finally obtain
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sion of the variational formula is given in (35), though here
the choice of real or complex inner product is no longer
crucial.
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ffllell_l(VrXH)'(VrXH)d.xdy—wznoeof H-Hdxdy

as the self-adjoint formula for the. propagation constant
involving lossy reciprocal media.

Now to check that the obtained formula (37) is indeed
stationary, we rewrite it as

<||€l|*1VTXH,VTXH>—0)2‘11,050<H,H>
=yXllell 2 X H,2 X H).

If the small perturbation 6H of the vector f1eld H is
introduced into (38), it results in a small change 8y in the
term y2 at a given frequency. Hence, (38) becomes

—(y?+8y>)(llell 2 X (H + 8H),2 x (H + 8H))
— w'ue(H+8H,H +0H)
+{lell "y X (H+6H), vy x (H+8H))=0. (39)

If the propagation constant term y? is stationary, then
8v? must be zero by Euler’s theorem. Hence, if we subtract
(38) from (39), ignore all terms of second order, and put
8v? to zero, we arrive at

(3H, v X (Jle| 7'V X H) = &’poegH) =0. . (40)

For an arbitrary 6H in (40), the second term of the inner
product emerges as the Euler equation (41)

v ><(||c]|“1V X H)— & e H=0

(41)

thus completing the proof of stationarity.

IV. ConNcrLusioN

A new variational formula (eq. (37)) has been established
for the solution of passive, uniform dielectric waveguides,
with an arbitrary permittivity profile. By using the less
common real inner product, the desired variational formu-
lation has been achieved in self-adjoint form, in terms of
real frequency, and leading to standard eigenvalue matrix
form. This has been achieved by accepting the constraint of
a symmetric (complex) permittivity tensor. Although a new
formulation, it is in effect complementary to the well-known
formulas (e.g., [16]) which used a complex inner product,
and so (for self-adjointness) was constrained to a Hermi-
tian permittivity tensor.

For the rare situation concerning material tensors that
are neither Hermitian nor symmetric (where the guide
could be lossy and nonreciprocal), a nonself-adjoint ver-

f’ |12 X H-2 X Hdxdy

(38)

(37)
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